Synthesizing Filtering Algorithms for Global Chance-Constraints
نویسندگان
چکیده
Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling framework for problems under uncertainty. To solve them is a P-Space task. The only solution approach to date compiles down SCSPs into classical CSPs. This allows the reuse of classical constraint solvers to solve SCSPs, but at the cost of increased space requirements and weak constraint propagation. This paper tries to overcome some of these drawbacks by automatically synthesizing filtering algorithms for global chance-constraints. These filtering algorithms are parameterized by propagators for the deterministic version of the chanceconstraints. This approach allows the reuse of existing propagators in current constraint solvers and it enhances constraint propagation. Experiments show the benefits of this novel approach.
منابع مشابه
Filtering algorithms for global chance constraints
Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling framework for problems under uncertainty. To solve them is a P-Space task. The only complete solution approach to date — scenario-based stochastic constraint programming — compiles SCSPs down into classical CSPs. This allows the reuse of classical constraint solvers to solve SCSPs, but at the cost of increased space req...
متن کاملGlobal Constraints and Filtering Algorithms
Constraint programming (CP) is mainly based on filtering algorithms; their association with global constraints is one of the main strengths of CP. This chapter is an overview of these two techniques. Some of the most frequently used global constraints are presented. In addition, the filtering algorithms establishing arc consistency for two useful constraints, the alldiff and the global cardinal...
متن کاملGlobal Constraints
Constraint programming (CP) is mainly based on filtering algorithms; their association with global constraints is one of the main strengths of CP. This chapter is an overview of these two techniques. Some of the most frequently used global constraints are presented. In addition, the filtering algorithms establishing arc consistency for two useful constraints, the alldiff and the global cardinal...
متن کاملFlow-Based Combinatorial Chance Constraints
We study stochastic variants of flow-based global constraints as combinatorial chance constraints. As a specific case study, we focus on the stochastic weighted alldifferent constraint. We first show that determining the consistency of this constraint is NP-hard. We then show how the combinatorial structure of the alldifferent constraint can be used to define chance-based filtering, and to comp...
متن کاملGlobal Constraints: a Survey
Constraint programming (CP) is mainly based on filtering algorithms; their association with global constraints is one of the main strengths of CP because they exploit the specific structure of each constraint. This chapter is an overview of these two techniques. A collection of the most frequently used global constraints is given and some filtering algorithms are detailed. In addition, we try t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009